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Abstract By using a new theoretical glass transition temperature (Tg)–composi-

tion equation, Tg’s of statistic binary copolymers obtained from MMA, St and AN

were investigated in this article. The copolymers were prepared by bulk copoly-

merization using azo-bis-isobutyronitrile (AIBN) as initiator. The compositions and

Tg’s were determined by NMR and DSC, respectively. The monomer reactivity

ratios were obtained by nonlinear fitting with Mayo–Lewis equation. Excellent

fitting results were obtained when relations of Tg’s of MMA–St, MMA–AN, and St–

AN copolymers with their compositions were investigated by using a new equation

which assumed additivity of bond stiff energy (Liu et al. J Phys Chem B 112:93–99,

2008). This equation contains mole fractions of triads and Tg’s of corresponding

periodic copolymers. Compared with the widely used Johnston equation and Barton

equation, the new equation showed its superiority. Meanwhile, Tg’s of the assumed

periodic copolymers that have not been acquired were tentatively predicted which

may provide useful information.

Keywords Composition � Copolymer � Glass transition temperature � Monomers �
Sequence

Introduction

Methyl methacrylate (MMA), styrene (St), and acrylonitrile (AN) are the most

widely used monomers in the polymer industry not only in homopolymerization, but

also in copolymerization. The binary copolymers among the three monomers are

widely used in many applications, such as thermoplastics, optical materials,
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modifying agents and so on, due to their excellent chemical, thermal, mechanical,

and optical properties [1–7]. The copolymerization characters determinate the

structure of the formed copolymer, which in turn influences its properties and

applications. The binary copolymerization behaviors among the three monomers

under different conditions have been studied heretofore [8–16]. As an important

intrinsic parameter, the glass transition temperature (Tg), greatly affects the

properties and further applications of the copolymers. Tg–composition relations of

the corresponding binary copolymers have been studied by several researchers, but

usually only qualitative relationships were discussed [3, 17–23]. Although the

quantitative relationships were also attempted to established, but large deviations

from experimental data were found frequently because of the lacking of suitable

Tg–composition equation [24–26].

As well known, copolymer Tg is mainly determined by Tg’s of corresponding

homopolymers, copolymer composition (Fi), sequence, etc., and so on. Large

deviations from the experimental Tg’s always appeared when Tg’s were predicted by

using the linear relations of Gordon–Taylor and Gibbs–DiMarzio (G–D) equations

which only considered composition contribution [27, 28]:

Tg ¼
wATgA þ KwBTgB

wA þ KwB

ð1Þ

Tg ¼ nATgA þ nBTgB ð2Þ

where Tg is the glass transition temperature of the copolymer; wi and ni are the

weight and molar fractions of the component i in the copolymer; Tgi is the glass

transition temperature of the homopolymer; K is a parameter specified by the model.

Gordon–Taylor equation was based on the assumption of the volume additivity of

repeating units in copolymer, while G–D equation was on the additivity of the chain

stiffness energy. In virtue of the assumption of the Simha–Boyer rule

(aTg = constant) [29] that the parameter K in Eq. 1 is equal to TgA/TgB, Eq. 1 can be

reformulated as the well known Fox relation [30]:

1

Tg

¼ wA

TgA

þ wB

TgB

ð3Þ

To interpret the deviations of experimental results from the linear equations,

sequence distribution effect should be taken into account. Considering the effect

of the diad sequence, Barton equation and Johnston equation are mostly used

[31, 32]:

Tg ¼ nAATgAA þ nBBTgBB þ nABTgAB þ nBATgBA ð4Þ
1

Tg

¼ wAPAA

TgA

þ wBPBB

TgB

þ wAPAB þ wBPBA

TgAB

ð5Þ

where Tgij is the additive temperature associated with diad sequence ij, nij and Pij are

the mole fraction and the probability of forming the respective diad ij from the end

group of unit i, respectively. However, discrepancies between experimental data and

theoretical results still exist when these equations are adapted to describe the

asymmetrical and even S-shaped Tg versus composition relations. When triad
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sequence effect was taken into consideration, the fitting results of most copolymer

Tg versus composition relations were obviously improved [33–35]. Ham extended

Barton equation as:

Tg ¼ nAAATgAAA þ nBBBTgBBB þ nAABTgAAB þ nBAATgBAA

þnABBTgABB þ nBBATgBBA þ nABATgABA þ nBABTgBAB

ð6Þ

where Tgijk and nijk are the additive temperature and mole fraction of triad sequence

ijk. However, there are six unknown parameters in this equation. To reduce the

number of intractable parameters, Ham arbitrarily assumed that TgABB, TgBBA,

TgABA and TgBAB to be equal in effect.

Empirical equations were also found to be convenient to describe copolymer

Tg–compostion relations. Schneider extended the Gordon–Taylor equation as [36]:

Tg � TgA

TgB � TgA

¼ ð1þ K1ÞwBc � ðK1 þ K2Þw2
Bc þ K2w3

Bc ð7Þ

The notations wBc is:

wBc ¼ 1� wAc ¼
KwB

wA þ KwB

ð8Þ

K1 and K2 are fitting parameters. Good fitting results were obtained, but

Schneider pointed out that no relationships between the fitting parameters and

physical characteristics of the copolymer components were available. Recently,

Brostow proposed an equation for the dependence of Tg on composition in blends as

well as in copolymers as [37]:

Tg ¼ wATgA þ wBTgB þ wAwB½a0 þ a1ðwA � wBÞ þ a2ðwA � wBÞ2

þ a3ðwA � wBÞ3�
ð9Þ

where a0, a1, a2, and a3 are fitting parameters. For the copolymer or blend with

higher complexity, the new equation shown better fitting results with the

experimental data compared with Fox, Gordon–Taylor, and Kwei equations. a0,

a1, a2 and a3 are just fitting parameters without explicit physical meaning.

In a previous article [38], we proposed a copolymer Tg–composition equation by

assuming additivity of bond stiff energy. When the effect of triad sequence

distribution (accurately C3 substituent effect) on copolymer Tg was considered, the

equation was described as:

Tg ¼ nAAATgA þ nBBBTgB þ 2ðnABA � nAABÞTg½AB�

þ 3nAABTg½AAB� þ 3nBBATg½BBA�
ð10Þ

where nijk is the mole fraction of the triad ijk, Tg[AB], Tg[AAB] and Tg[BBA] are Tg’s of

periodic copolymers poly[AB], poly[AAB] and poly[BBA] (normally poly[AB] is

called alternating copolymer), respectively. The mole fractions of triads can be

calculated from the reactivity ratios and feed compositions of the monomers and

those Tg contributions of periodic copolymers can be determined experimentally or

solved out by data regression. Excellent fitting results have been obtained when it
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was applied to copolymers of ethylene with methyl methacrylate (E-MMA),

ethylene with vinyl acetate (E-VAc), methyl methacrylate with ethyl methacrylate

(MMA-EMA) and methyl methacrylate with n-butyl methacrylate (MMA-n-BMA)

[38, 39]. Simultaneously, the equation can also provide the effect of substitution on

bond rotation flexibility [39] as well as the Tg’s of periodic copolymers that have not

been synthesized yet.

In this article, Eq. 10 is applied to investigate the Tg versus composition

relationships of MMA–St, MMA–AN, and St–AN statistic binary copolymers. From

this article, two objects are to be carried out, one is the certification of the universal

application of the equation, the other is the acquisition of quantitative results for

MMA–St, MMA–AN, and St–AN binary copolymers.

Experimental

Materials

MMA, St, AN, the initiator azo-bis-isobutyronitrile (AIBN), the precipitating agents

methanol, and the solvent N,N-dimethylfomamide (DMF) were all analytically pure

and supplied by Tianjin Chemical Reagent Co. (Tianjin, China). MMA and St were

washed thrice with 5 wt% sodium hydroxide to remove inhibitor followed by

distilled water until neutral and dried for 24 h over anhydrous sodium sulfate and

anhydrous calcium chloride, respectively. Then they were distilled under reduced

pressure. AN was firstly distilled under normal pressure, then followed with

fractional distillation under normal pressure. AIBN was recrystallized twice from

methanol, dried in a vacuum oven at room temperature. Then all the products were

stored in the refrigerator before use.

Copolymerization

Free radical polymerization of MMA with St, MMA with AN, and St with AN were

performed in the presence of AIBN as radical initiator at 60 �C in a water bath. The

initial mixtures of monomers and AIBN were added entirely into a 100 mL four-

necked flask which was equipped with stirrer, thermometer, condenser, and a

nitrogen gas introducing tube. The initial mixtures consisted necessary mole

fractions of corresponding monomers and approximately 2.5 9 10-2 mol L-1

AIBN. The polymerizations were stopped at low conversion (less than 5 wt%) to

ensure the compositional homogeneity of prepared copolymers by cooling the

system to room temperature and dripping the products slowly into a beaker filled

with tenfold volume of cold anhydrous methanol. The post-precipitation mixtures

were left in the anhydrous methanol overnight by stirring it and then filtered through

a sintered funnel. The products were further purified by a repeated dissolution/

precipitation procedure, using DMF and anhydrous methanol as a solvent/non-

solvent pair. The powdered copolymer samples were finally dried to constant mass

under vacuum at 50 �C for a week before the characterization and measurement.
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Measurements

The compositions of copolymers were determined experimentally by quantitative
1H-NMR spectra which were recorded with a Bruker Avance-400 NMR spectrom-

eter operated at 400 MHz and 25 �C using deuteronchloroform (CDCl3) or

(dimethyl sulfoxide)-d6 (DMSO-d6) as solvent. 16 scans were accumulated for each

sample. The pulse delay is 6 s and the concentration was about 5% (w/v, g mL-1).

Glass transition temperatures were measured by using a Perkin-Elmer Diamond

differential scanning calorimeter (DSC). The sample weight was about 10 mg. All

the samples were scanned several times in the temperature range from -20 �C to

50–60 �C after the glass transition. After each heating scan the sample was annealed

for 10 min to erase the thermal history memory. The DSC traces were recorded in

the heating scans except the first one. Tg was estimated from the point of the half-

change of the heat capacity. For a given sample, the Tg was the average of all the

scans and reproducible to be ±0.5 �C.

Results and discussion

Copolymer of methyl methacrylate with styrene

First of all, reactivity ratios (ri) must be solved out because that the they are

necessary for the calculation of triad concentration in Eq. 10. 1H-NMR spectra of a

MMA–St copolymer is shown in Fig. 1 as an example to illuminate the attributions

of the diverse peaks. The compositions of MMA–St copolymers were calculated

from the ratio of the peak area of hydrogen in phenyl to that of hydrogen in methyl.

7 6 5 4 3 2 1 0

-CH (St)

-CH2 (St + MMA)

-CH3 (MMA)

CH2 CH2 C

C O

OCH3

CH3

CH

(St) (MMA)

ppm

-C6H5 (St)

-OCH3 (MMA)Fig. 1 1H-NMR spectra
(400 MHz) of MMA–St
copolymer (FSt = 0.104)
in CDCl3 at 25 �C
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Table 1 tabulates the monomer feed mole fractions (fi), which are the average of the

initial and final ones in the copolymerization, and the corresponding copolymer

compositions. A nonlinear least square method (NLLS) was utilized to fit the

experimental data with Mayo–Lewis equation [40, 41]. The experimental data as

well as the theoretical results are shown in Fig. 2.

As shown in Fig. 2, the agreement of theoretical results with experimental data is

excellent, which indicates that the obtained reactivity ratios are reliable, which are

summarized in Table 2. The results of rMMA = 0.463 and rSt = 0.523 are

approximately equal to that reported by Brar [42], O’Driscoll [43], and Hirooka

[44] for bulk copolymerization and Lewis [40] for solution copolymerization.

The Tg’s determined by DSC versus St mole fractions for MMA–St copolymers

are shown in Fig. 3. It illuminates that the copolymer Tg decreases sharply with the

increasing content of St in and shows a minimum, which is similar to the literatures

Table 1 Average monomer

feed mole fractions and

copolymer compositions in

MMA/St copolymerization

fSt FSt Conversion (wt%)

0 0 4.48

0.053 0.104 3.51

0.121 0.205 1.53

0.217 0.295 2.63

0.337 0.393 3.55

0.484 0.501 2.99

0.630 0.597 2.76

0.760 0.705 2.89

0.868 0.802 2.50

0.939 0.895 3.03

1 1 2.84

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

NMR data

Mayo-Lewis equation

F St

f
St

Fig. 2 The mole fractions
of St in MMA–St copolymers
versus average monomer feed
compositions
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[32, 35, 36]. It is also known that the glass transition temperature changes with

molecular weight of the polymer but remains relatively constant when the molecular

weight is large enough. The number-average molar masses of the obtained MMA–St

copolymers were in the range of 4.0–7.0 9 104 determined by GPC. Using

K = 1.9 9 105 for the average of PMMA and PS[45, 46], the variety of Tg will be

smaller than 2.0 K, which could be ignored comparing with the range of 26.1 K in

the MMA–St series. Also the regularity of the Tg change indicates that the deviation

of the Tg caused by molecular weight change has little influence on the

Tg–composition relation.

Firstly, Barton equation (Eq. 4) and Johnston equation (Eq. 5) were applied to

explain the experimental data. Diad compositions in these equations were calculated

from monomer feed compositions and reactivity ratios. The fitting results are also

plotted in Fig. 3. The results show that there are large system deviations instead of

random ones between the predicted and the experimental Tg’s. This indicates that

the Tg–composition relation of the MMA–St statistical copolymers can’t be

predicted perfectly with the diad equations.

Meanwhile, Eq. 10 was also adapted to interpret the experimental data. The mole

fractions of different triads were calculated by using the feed compositions and

reactivity ratios, as described before [38]. The three parameters (Tg[AB], Tg[AAB], and

Table 2 Reactivity ratios among MMA, St and AN

M1 M2 Fitting results Literature data Reference

r1 r2 r1 r2

MMA St 0.463 ± 0.010 0.523 ± 0.011 0.47 0.52 42

MMA AN 1.364 ± 0.029 0.165 ± 0.003 1.45 0.17 47

St AN 0.491 ± 0.012 0.056 ± 0.001 0.40 0.04 54

0.0 0.2 0.4 0.6 0.8 1.0
370

380

390

400

equation 10 

Barton equation

Johnston equation

T
g 

 (K
)

F
St

Fig. 3 Experimental and
predicted Tg’s of MMA–St
copolymers. Solid squares
denote statistical copolymers
and homopolymers. Solid line
Equation 10, dash line Barton
equation (Eq. 4), Dot line
Johnston equation (Eq. 5)
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Tg[BBA]) were regressed simultaneously by nonlinear fitting the experimental data

with Eq. 10. As shown in Fig. 3, the fitting result is perfectly well and the

experimental data distribute in both sides of the theoretical Tg–composition curve

randomly. That is to say that Eq. 10 is more suitable for predicting the

Tg–composition relation of MMA–St statistical copolymers comparing with

Johnston and Barton equations. Besides, Eq. 10 also gives 384.8, 372.1, and

372.2 K for Tg[MS], Tg[MMS], and Tg[SSM], respectively. Although large deviation can

be found for the predicted Tg[MS] from 364.2 K reported by Hirooka. While the

difference between Tg[MS] with TgPMMA, 15.2 K, is close to that of 11.0 K obtained

by Hirooka [44].

Copolymer of methyl methacrylate with acrylonitrile

The compositions of MMA–AN copolymers obtained from 1H-NMR spectra by

calculating the ratio of peak area of hydrogen in methine to that of hydrogen in

methoxy are tabulated in Table 3. The average monomer feed mole fractions are

also enumerated in the same table. The corresponding reactivity ratios of MMA/AN

copolymerization were acquired by fitting the experimental data with the same

method mentioned above and also listed in Table 2. The results of rMMA = 1.364

and rAN = 0.165 are close to that of rMMA = 1.45 and rAN = 0.17 obtained by Brar

[47] and the results obtained by other researchers [6, 48–51].

Figure 4 shows the plots of experimental Tg’s versus AN mole fractions for

MMA–AN copolymers. It is found that the incorporation of both AN to MMA or

MMA to AN causes decrease of Tg and minimum Tg appears in the middle

composition. This result is same to that reported by Johnston [52] and other

researchers [34, 36]. Barton equation, Johnston equation, and Eq. 10 were adopted

to fit the experimental data and the fitting curves with these equations are also

plotted in Fig. 4. During the course of the data processing, the diad compositions as

well as the triad compositions were calculated from the average monomer feed mole

fractions and reactivity ratios [38].

Table 3 Average monomer

feed mole fractions and

copolymer compositions in

MMA/AN copolymerization

fAN FAN Conversion (wt.%)

0 0 4.48

0.137 0.088 2.57

0.287 0.198 3.76

0.447 0.302 3.74

0.604 0.394 3.97

0.750 0.509 2.40

0.853 0.611 2.49

0.911 0.699 3.19

0.952 0.800 2.80

0.975 0.884 1.73

1 1 2.56
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Figure 4 demonstrates that not only large but also system deviations appear

between the theoretical Tg’s predicted by Barton and Johnston equations with the

experimental data for MMA–AN copolymers. On the contrary, outstanding

consistency as well as random deviation was observed when Eq. 10 was used

instead. This indicates that when the Tg–composition relation of MMA–AN

copolymers is studied, Eq. 10 also shows its superiority over Johnston and Barton

equations. Apart from these, the data fitting also affords 419.6, 331.8, and 345.4 K

for Tg[MA], Tg[MMA], and Tg[AAM], respectively. It seems that the result of Tg[MA] is

comparatively high comparing with that of 352.2 K predicted by Johnston [53], but

the deviations will increase greatly if the Tg[MA] deviates little from 419.6 K. The

phenomena also appeared in the fitting of Tg’s of MMA–St–AN terpolymers which

will be described in a later paper. This conforms the reliability of the fitting result

although the validation of the Tg of poly[MMA–AN] remains unknown because that

the alternative copolymer has not been acquired up to now.

Copolymer of styrene with acrylonitrile

The compositions of St–AN copolymers were also obtained from the 1H-NMR

spectra by reckoning the ratio of peak area of hydrogen in phenyl to that of

hydrogen in methine. The obtained average monomer feed mole fractions and

copolymer compositions are tabulated in Table 4. The NLLS fitting gives the results

of rSt = 0.491 and rAN = 0.056 (as shown in Table 2) which are highly close to that

of rSt = 0.4 and rAN = 0.04 acquired by Doak [54] and the results reported by

Schmidt-Naake [55], Arsac [56], and Brar [42].

Figure 5 shows the relation of Tg’s determined by DSC with copolymer

compositions for St–AN copolymers. Maximum Tg appears in the middle

composition as reported by other researchers [3, 44, 52]. This may attribute to

the increase of the chain stiffness of the macromolecule. The experimental data

0.0 0.2 0.4 0.6 0.8 1.0
350

360

370

380

390

400

equation 10 

Barton equation

Johnston equation

T
g 
 (

K
)

F
AN

Fig. 4 Experimental and
predicted Tg’s of MMA–AN
copolymers. Solid squares
statistical copolymers and
homopolymers, solid line
Eq. 10, dash line Barton
equation (Eq. 4), dot line
Johnston equation (Eq. 5)
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were also dealt with Barton equation, Johnston equation, and Eq. 10, respectively.

The method used in fitting was same as used in MMA–St copolymers.

Similar to the results shown above, large deviations of theoretical values

predicted by both Johnston and Barton equations from experimental data for St–AN

copolymers were observed. In contrast, excellent agreement of theoretical values

with experimental data was obtained when Eq. 10 was employed. Meanwhile, the

fitting result of Eq. 10 shows a random deviation, instead of system deviations of

Barton equation and Johnston equation, between the theoretical and experimental

data, as shown in Fig. 5. This indicates that Eq. 10 is more appropriate to interpret

the relation of Tg’s versus compositions of St–AN statistical copolymers compared

with Barton and Johnston equations. The excellent fitting results shows the

dependability and applicability of Eq. 10. In addition, Tg values of the assumed

periodic copolymers are provided as follow: Tg[SA] = 382.4 K, Tg[SSA] = 384.8 K

Table 4 Average monomer

feed mole fractions and

copolymer compositions in St/

AN copolymerization

fAN FAN Conversion (wt%)

0 0 2.84

0.048 0.091 4.01

0.118 0.181 4.55

0.228 0.273 2.92

0.424 0.379 2.93

0.756 0.504 2.30

0.926 0.630 2.24

0.967 0.714 2.61

0.983 0.807 1.2

0.993 0.897 0.87

1 1 2.56

0.0 0.2 0.4 0.6 0.8 1.0
372

376

380

384

388

equation 10 

Barton equation

Johnston equation

T
g 

 (K
)

F
AN

Fig. 5 Experimental and
predicted Tg’s of St–AN
copolymers. Solid squares
denote statistical copolymers
and homopolymers. Solid line
Eq. 10, dash line Barton
equation (Eq. 4), dot line
Johnston equation (Eq. 5)
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and Tg[AAS] = 393.0 K. It is significant to note that the fitting result of 382.4 K for

Tg[SA] is highly close to the experimental result of 384.7 K obtained by Johnston

[52]. This illuminates that the obtained periodic copolymer Tg’s from the Eq. 10 are

rather trustworthy.

Conclusions

For the bulk copolymerization of MMA/St, MMA/AN and St/AN systems, the

reactivity ratios were obtained as rMMA = 0.463 and rSt = 0.523 for MMA with St;

rMMA = 1.364 and rAN = 0.165 for MMA with AN; rSt = 0.491 and rAN = 0.056

for St with AN. When the Tg–composition relationships of the three series binary

copolymers were investigated, both Barton equation and Johnston equation showed

large deviations. Whereas Eq. 10 which assuming the additivity of bond stiff energy

gave outstanding consistencies for all the three series of copolymers. Also the

predicted values showed random deviations, instead of system deviations, from the

experimental data when Eq. 10 was employed. Therefore, Eq. 10 is feasible and

veracious for the Tg–composition relation investigation of MMA–St, MMA–AN and

St–AN binary copolymers. Tg’s of periodic copolymers among MMA, St, and AN

were also rationally evaluated as: Tg[MS] = 384.8 K, Tg[MMS] = 372.1 K, Tg[SSM] =

372.2 K, Tg[MA] = 419.6 K, Tg[MMA] = 331.8 K, Tg[AAM] = 345.4 K, Tg[SA] =

382.4 K, Tg[SSA] = 384.8 K and Tg[AAS] = 393.0 K.
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